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A model of a thermosyphon with arbitrary geometry and known wall temperature is 
presented. A one-dimensional study is made with axial conduction effects included. Both 
steady-state as well as time-dependent behaviours are analysed. Multiple steady-state 
solutions are identified. The time-dependent problem can be reduced to a set of infinite 
ordinary differential equations. However, the flow velocity is determined from a subset of 
three equations. These equations are closely related to the Lorenz equations. 
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I n t r o d u c t i o n  

Natural convection loops have been studied extensively in 
recent years. Interest has arisen, on the one hand because of 
their importance in practical applications such as solar energy 
utilization 1,2, emergency nuclear reactor cooling a'4, and heat 
dissipation from electrical components, and on the other 
because natural convective loops are devices that can be 
described with simple one-dimensional models that display 
fundamental properties of natural convection phenomena like 
multiplicity of steady-state solutions and periodic oscillations; 
see for instance Refs 5-8. A recent review on natural circulation 
loops is presented by Mertol and Greif 9. 

Using Fourier analysis as proposed by Malkus 10, Yorke and 
Yorke 6 studied the convective motion inside a toroidal one- 
dimensional loop, assuming known wall temperature but 
neglecting axial heat conduction. They found that the velocity in 
the transient state can be described by a set of three ordinary 
differential equations that for symmetric heating reduce to the 
Lorenz equationslL The fluid motion was found to display 
steady, periodic and aperiodic behaviour. 

Up to now, thermal axial conduction has been neglected in 
most theoretical analyses. Although this effect is unimportant in 
some practical applications, it can be the dominant effect when 
the working fluid has large thermal conductivity. The effect of 
axial conduction on the velocity and temperature distribution in 
a toroidal loop with constant heat input in the lower half and 
known wall temperature in the upper half was numerically 
investigated by Greif et aP 2, who reached the conclusion that it 
stabilizes the flow and smoothens out temperature fields. In an 
investigation carried out in parallel with the present paper, Sen 
et al 13 have theoretically studied the convective flow inside a 
loop of arbitrary geometry and known heat input. Application 
of the theory developed by them to a toroidal geometry 
indicates that the steady-state velocity as a function of the tilt 
angle and the heat flux has the properties of a cusp catastrophe. 
Also, it is emphasized that zero velocity can be a steady-state 
solution in contrast with the case of no axial conduction. 

In the present paper, we study the convective motion inside a 
loop with arbitrary geometry and known wall temperature; 
axial heat conduction is taken into account. The particular case 
of toroidal geometry is studied in detail. 
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Mathematical formulation 

A thermosyphon of arbitrary configuration but with smooth 
bends of a large radius compared with that of the pipe, and 
constant cross-section, contained in a vertical plane is 
considered. A known wall temperature Tw(s ) over the entire loop 
is assumed, where s is a longitudinal coordinate (Fig 1). The 
convective heat transfer coefficient h is taken to be a constant. 
The one-dimensional equations are used together with the 
Boussinesq approximation. Axial conduction is included, and 
viscous dissipation is neglected as are the effects of curvature. 

From the equation of continuity for incompressible flow, we 
have that the velocity is a function of time only. The momentum 
equation in the s direction is given by 

du c~p ~ 32v 
P~= ~s po(s)--~-u (1) 

where ~(s) is the component of the gravitational acceleration in 
the negative longitudinal direction. The friction forces are taken 
to correspond to fully developed Poiseuille flow. The flow is 
induced by the density field p(T), which we assume to be a linear 
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Figure 1 The natural circulation loop. The wall temperature is a 
known function of the longitudinal coordinate s 
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function of the form 

p=po{ l  - f l ( T -  To) } 

where Po is the fluid density at the reference temperature To and 
fl is the volumetric expansion coefficient. 

Using the expression for the density in terms of the 
temperature in Eq (1), and integrating around the loop, we get 

du 32v fl /'L 
~-~+-~- u=~ ~o ~(s)T(s, t)ds (2) 

The energy equation is 

pocD [dT OT'~ kD a2T +h(T~- T) (3) 
4 ~07+u-~s-s)=4 - as 2 

The solution for the velocity and the temperature are obtained 
by solving Eqs (2) and (3) simultaneously. 

The dimensionless forms of the governing equations are: 

d~ ~- V= G a(x)O(x, z) dx (4) 

and 

dO vOO K~2+HO=HOw (5) ~+ ~ -  

where the dimensionless parameters are defined in the Notation. 

S t e a d y - s t a t e  solutions 

Indicating the time-independent variables by ~" and 0(x), the 
steady-state governing equations (4) and (5) simplify to f' I"= G 6(x)O(x) dx (6) 

0 

and 

- O0 OzO - - 
V -~x - K -~x2 + H O = H O w (7) 

Integrating Eq (7), and using the boundary conditions 

0(0)=0(1) 

dO 

the temperature distribution becomes 

O= b ~exp(r~ +rxx ) f~ exp(_r,X)Ow(x)dx 
rz -r l  ~ 1-exp(rO 

exp(rz + r2x) (1 exp ( -  r2X)Ow(X) dx 
1 - exp(r 2) Jo 

fo :eXp(-rxx )0w(x )dx +exp(rxx ) ' - , , 

f: } t - -  t p - exp(r2x ) exp( -  r2x )0,(x ) dx 

where 

a 1 
r, = - ~ -  ~ ~ / ~ -  4b 

a 1 /_2 
r2 = - ~ + ~ / a '  - 4 b  

a= - ~'/K 

b= - H / K  

(8) 

Toroidal thermosyphon 

We consider the special case of a toroidal geometry. The wall 
temperature is assumed to be 

0~, = - sin(2r:x - 7 ) 

where 7 is an angle of inclination. When ~,=0, the wall 
temperature i_s symmetric with respect to a vertical diameter. 

Replacing 0, in Eq (8), and integrating, we get 

b ~ cos(2nx-7)  cos(2nx-7) 
0= 

r 2 - r  1 ~ ( 2 ~ )  2rt(1 +r2/4n 2) 

r2 sin(2nx--y) rx sin(2nx--7)'~ 
+4n2(1 +r22/art2) ~ 2 - ~ ~ ) j  (9) 

The gravity function that corresponds to a toroidal 
thermosyphon is 

a(x)= cos(2r~x) (10) 

using Eqs (9) and (10) in Eq (6), we get an expression for the 

Notation 
B1 Parameter defined after Eq (27) 
B 2 Parameter defined after Eq (27) 
c Specific heat 
D Internal diameter 
G Gr/ct 

Gravitational acceleration 
Local component of gravitational acceleration 

Gr Grashof Number =fl AToDa/lO24v 2 
H Nu/Pr 
h Heat transfer coefficient 
K 1/(Pr ~2) 
k Heat conductivity 
L Total length of the loop 
Nu Nusselt N u m b e r -  4Dh/k 
p Pressure 
Pr Prandtl Number = 32pocv/k 
s Longitudinal coordinate 
T Temperature 
t Time 
u Velocity 
V Dimensionless velocity -= D 2 u/32vL 
x Dimensionless longitudinal coordinate-  s/L 
X Variable representing dimensionless velocity Vin 

Eqs (25)-(27) 
Y GO] (in Eqs (25)-(27)) 
Z GO' 1 (in Eqs (25)-(27)) 
a LID 
fl Coefficient of volumetric expansion 
7 Angle of inclination 
6 Dimensionless local gravitational acceleration-= ~/g 
AT Reference temperature difference 
e Parameter defined after Eq (11) 
0 Dimensionless temperature =- ( T -  T w)/AT 
2 4/z2K + H  
v Kinematic viscosity 

Parameter defined after Eq (11) 
p Density 
(r 1/2 

Dimensionless time = 32vt/D 2 

Subscripts and superscripts 
c Cosine coefficiency 
o Reference value 
s Sine coefficient 
w Value at the wall 

Time independent values 
' Variables defined after Eq (27) 
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Figure2 Steady-state velocity ~Tas a function of e for ~ =0.07; 
7=0; . . . .  7=10"; . . . . . . .  7 = - 1 0  * 
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velocity 

~.= GH{2rc ~" cos 7 + ( 4rc2K + H) sin ~} 
2{ (4n2K + H) 2 + (2n ~.)2} (11) 

Making the following change of variables: 

= GH/4n 

and 

e = (4n2K + n)/2n 

we obtain 

~" - ~2 + ~.2 ( ~" cos 7 + t sin 7) (12) 

the solutions of which give the stead_y-state velocity for the 
toroidal thermosyphon. Fig 2 shows V as a function of ~ for a 
fixed ~ and 7 = 0° -t- 10 °. In general, three complex solutions may 
be found. In the particular case ~, = 0 °, where heating takes place 
on the lower half and cooling on the upper half, the solutions 
are: ~ ' = 0 + ~ / ~ - ~  2. 

For fixed heat transfer coefficient and Grashof number, large 
heat conductivities such that ~2> ~ yield ~ '=0 as the only 
possible real solution, while for e* < ~ three real solutions may 
occur. This result is expected since, for the first case, the heat can 
be transferred from the hot to the cold region entirely by 
conduction. In the second case with low conductivity the more 
efficient heat transport mechanism of convection appears. The 
same comments apply for a tilted thermosyphon for either 
positive or negative (small) angles, as can be seen from Fig 2. 
When 7 # 0, strict zero velocity is not present for finite t, but a 
sharp decrease in the velocity is found, indicating that 
conduction is the dominant heat transport mechanism for large 
e. For a given heat transfer coefficient and working fluid, 
existence of the nontrivial solution for the steady-state velocity 
depends on the Grashof number or, equivalently, on the heat 
input. Fig 3 shows the velocity as a function of the tilt angle for 
fixed ~ and ~=0.1, 0.2 and 0.3. It can be seen that, for large tilt 
angles, only one real solution is obtained. 

T r a n s i e n t  s t a t e  

We now analyse the transient behaviour of a thermosyphon of 
arbitrary shape. Because cS(x), O(x, z) and 0.(x) are periodic, we 
can make the following Fourier series expansions: 

6(x)= ~ {~5c. cos 2nnx+6'. sin 2nnx} (13) 
n = l  

O(x,'r)=Oo(z)+ ~ {O¢.(x)cos2nnx+~('c)sin2nnx} (14) 
n = l  

O.(x)=O.,o + ~ {~,.  cos 2nnx +O~.,. sin 2nnx} (15) 
n = l  

where 

0o(~) is the spatial average of the dimensionless fluid 
temperature: 

Oo(z) = O(x, z) dx 

and 0w,o is the spatial average of the dimensionless wall 
temperature: 

= _Io Ow(x) dx 0.,o 

Introducing Eqs (13) and (14) to Eq (4), and simplifying, we get 

dz ~-V=G ~ {~.cos2nnx+~.sin2~nx} 
n = l  

x ,=1 ~" {O~"('r)c°s2rmx+OS"(x)sin2nnx}] dx (16) 

From Eq (5) we have 

dO H(O.o_Oo)+ ~ t--J-d-.['dO: cos ~ d0.' . } znnx +--~- sm 2nnx 
d r  " . = ,  t "  

- 2~zV ~ {n~ sin 2rmx- nOS. cos 2rmx} 
n = l  

+ 4n2K ~ {n2~ cos 2nnx + n2~ sin 2nnx} 
n = l  

=H ~ {0~,. cos 2nnx + 0'.,. sin 2nnx} 
n = l  

- n ~ {~(~) cos 2nnx + ~(z) sin 2nnx} (17) 
n = l  

Integrating this around the loop, we get 

d0o 
--d-~-T = n(o., o - 0o) (18) 

the solution of which with initial condition 0o(0) is 

0.,0 - 0o(Z) = exp(-  nz) (19) 
0. .o - 0o(0) 

From Eq (17), we get 

dO¢" t- 2urn VOw,,, + 4n2m2 KO':., = n(o~, ,. - 0¢,.) (20) 
dz 
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Figure 3 S t e a d y - s t a t e  v e l o c i t y  I / a s  a f u n c t i o n  o f  the tilt a n g l e  7; - -  
- - 8 = 0 . 1 ;  . . . . .  ~=0.2; . . . .  ~=0.3 
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Table 1 Physical properties of three l iquids considered 

Acetone Water Mercury 

p0 
(kg m -3) 791 998 13 546 
fl 
(=C -1) 14 .3x10 -4  1 .8x10 -4 1 .8x10 -4 

C 

( J k g - l = c  -1) 2.16x103 4.18x103 0.14x103 

k 
(Wm-I=C -1) 0.180 0.598 9.304 

V 

(m2s -1) 4 .18x10  -7 10.06x10 -7 1 .15x10 -7 

and 

c 2 2 s s dOS,. 2rcmVOm+4~ m KO==H(OSw,m-Om) (21) 
dz 

The equations (16), (20) and (21) represent an infinite set of 
ordinary differential equations in the unknowns V(z), Oo(z), 
~(z ) ,  O~=(z), ( r e=l ,2  . . . .  ). For the toroidal geometry, 
6(x) = cos(2nx) and the velocity V(z) is determined by a subset of 
three equations which decouple from the rest. These are 

dV 
dz t-V= 0] (22) 

dOC~ ~-2nVO] +4~2K0] - c ¢ - -  -H(Ow.1-01)  (23) 
dz 

d0~ . 2nV~ 2 , , - - -  + 4 n  KOt=H(OwA-0'0 (24) 
dz 

If we make a change of variables of the following form: 

X = V  

G 
Y = ~ O ]  

G z= go~ 

then Eqs (22)-(24) become 

dX 
- - = Y - X  
dz 

d Y  
- -  = B~ - 2~X Z -  2 Y 
dz 

dZ 
- - =  - B 2  + 2 n X Y - 2 Z  
dz 

where 

G c 
BI =-~ HO,.1 

W 2 = --  £ HOSw, 
2 " 

2 = 4 n 2 K + H  

With the further change of variables 

X ' = X / 2  

Y ' = 2 n Y / 2  

, 2n 
z = T  (z + B2/z) 

and 

(25) 

(26) 

(27) 

z'=2"c 

M. Sen 

Eqs (25)-(27) take the form 

dX' 
~Tz, = o ( Y ' -  X') (28) 

dY' 
- -  = - Y '  + r X ' -  Z ' X '  + R '  (29) 
dz' 

dZ' 
- - = X ' Y ' - Z '  (30) 
dz' 

with 

a= l /A  

r = 2nB2/). 2 

r'= 2riB1/22 

For a symmetrical distribution of the wall temperature 
around a vertical diameter ~w,~ = 0, B~ = 0, for which r' = 0. Eqs 
(28)-(30) then reduce to the Lorenz equations, whose properties 
have been discussed thoroughly elsewhere 6'1~. 

P a r t i c u l a r  e x a m p l e s  

In order to visualize the results obtained in the previous section, 
the stability of the flows of three working fluids in toroidal loops 
are discussed. The chosen fluids are acetone, water and mercury. 
The wall temperature is assumed to be of the form 0Cw,t =0, 
~w,~ = - 1 and therefore symmetrical with respect to the vertical. 
Under these conditions, r '=  0 in Eq (29). The heat transfer 
coefficient, required to calculate the Nusselt number, is taken as 

h = l  j m - 2 s - a o c - 1  

The temperature for s = 0 is 20°C. The physical properties of the 
fluids are given in Table 1. 

The stability maps in the (1/=, AT) space for the cases under 
study are given in Fig 4. According to the Lorenz equation 
theory 6'~ the stability boundaries are given by the following 
expressions. 

(i) For a > 2 :  

• r <  1, one stable conductive solution, region (1); 

• a ( a  + 4) 
• i < r < - - ~ - ~ _  2 , two stable solutions, region (2); 

tr(tr + 4) 
• r > ~ z - ~ _  2 , unstable solutions, region (3). 

a 

I 0.2 

o.i ® 

o I 
o IO 2o 

A T,oC 

i I 
5(3 40 0 0.2 0.4 0.6 

b zx r,°c 

i 
0.8 

0.2 

o. I  

o IO 

..2 j 
; > 2  

C 

O I I 
20 30 40 

AT,°C 

Figure 4 Stability maps for (a) acetone, (b) waterand (c) mercury; 
d=O.Olm; h = l J m - 2 s - l ° C  -1. Region (1) r< l ;  Region (2) 
1 < r <  ( a ( a + 4 ) / ( a -  2)); (3) r>  (c r (~ r+4) / (a -2 ) )  
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Figure 5 Stability map for a fictitious fluid with physical properties 
as those of mercury, but thermal conductivity 10 -6 W m-  1 °C- 1 

(ii) For  ~r<2 the system is motionless. 

The geometrical parameter 1/~ (cross-sectional diameter/ 
total length of the torus) is used in the vertical axis, and therefore 
the possible values go from zero to 1/n. The lower region 
corresponds to long, thin loops, while the upper region 
corresponds to fat loops. The one-dimensional theory presented 
here is expected to be valid for the lower part of the maps, since 
no two- or three.dimensional effects, which might be dominant 
for fat loops, are taken into account. 

It is clearly seen that all examples are stable for low AT, as 
they are expected to be. Actually, A T =  0 should be stable for all 
geometries. Also, in the limit 1/a---~ 0 the systems are stable since 
the frictional effects are dominant. The unstable region for the 
acetone is larger than that of water. This is expected since the 
acetone has a larger thermal expansion coefficient and lower 
kinematic viscosity than water. Thin loops with mercury as 
working fluid are found to be unstable for AT as small as 0.1°C 
but very large temperature differences (A T,,, 50°C) are required 
for 1/o~ > 0.1. In order to clarify the role played by the thermal 
conductivity in this case, Fig 5 shows the stability map obtained 
for a fictitious fluid with the same properties as the mercury, but 
with a thermal conductivity k = 10- 6 W m - 1 °C- 1. The effect is 
that, except for a small region at extremely low AT or I/a, the 
system in motion. 

Conclusions 

The effect of axial heat conduction on a one-dimensional loop 
with known wall temperature is analysed. Multiple steady-state 

velocities are found, the values of which depend on the geometry 
of the loop, the heat input and the physical properties of the 
working fluid. The qualitative nature of the steady-state velocity 
for both the conductive and nonconductive models is similar. 
This is also true for the transient governing equations, which 
have the same qualitative nature for both models. For  this 
reason the nonconducting model as discussed in Ref 6 is 
structurally stable. 
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